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A procedure is given for separating and phasing terms originating from different Bessel-function orders 
in cylindrically averaged fibre diffraction patterns, using isomorphous heavy-atom derivatives. Model 
calculations and an application to tobacco mosaic virus are described. 

In structural studies on tobacco mosaic virus (TMV) 
gels special problems arise from the nature of the 
diffraction pattern. The virus particles take up random 
orientation around their long axes and have only weak 
correlation with each other so that the diffraction 
pattern consists essentially of the cylindrical average 
of the square of the structure factor of a single particle. 
The diffraction pattern is limited to layer lines by the 
periodic nature of the virus but along each layer line 
the intensity is a continuous function which can be 
described as the sum of squares of a number of func- 
tions, the so-called G functions of Klug, Crick & 
Wyckoff (1958). 

Each G function is related to a particular helical 
projection in the virus. Because of the high symmetry 
on any one layer line only three G functions are present 
out to 5 A resolving power. At low resolution (<  12 A) 
only one G function contributes to the observed 
intensity. If this condition pertains then 

IFI2=IGI2=I , 

where I is the measured intensity. Therefore, at low 
resolution the normal techniques of protein crystallog- 
raphy can be applied to the TMV diffraction pattern 
to produce an electron density map (Barrett et al., 
1971). At higher resolution the structure factor F can 
be recreated /f the various G components can be 
separated and phases assigned to each. The present 
paper shows how this is in principle possible for any 
number of G's and how in practice two G's can be 
separated. The basis of the method is an extension of 
the method of isomorphous replacement. The results 
of this application to TMV have already been 
described (Holmes, Stubbs, Mandelkow & Gallwitz, 
1975). That such a solution was possible in principle 
was pointed out by Holmes (1959). It is generally 
applicable to non-crystalline fibre diffraction problems, 
and to some crystalline fibres. Some model calculations 
are presented which indicate the reliability of the 
method. The application to TMV is discussed. 

1. Theory of diffraction by a helix 

Regular fibrous structures may be described as helices 
of repeating sub-units. Cochran, Crick & Vand (1952) 
showed that the structure factor of such a helix is 

F(R, gt, l/c)= ~ ~fjJ,(2~Rrj) 
n j 

x exp i ( -  n(~j + 2~lzj/c) exp in(~' + g/2). (1) 

R, g and l/c are reciprocal-space cylindrical coor- 
dinates (l is an integer, the layer-line number, ¢ is the 
repeat distance on the z axis), r j, ~bj and zj are the 
cylindrical coordinates of atom j in real space, which 
has scattering factor fj.  

J ,  is the Bessel function of the first kind of order n. 
The summation over n is limited by the selection rule 
(determined by the helical symmetry) 

l= tn +um (2) 

where m is an integer, and the helix has u subunits in 
t turns. 

Klug, Crick & Wyckoff (1958) define the complex 
number 

G,z(R)= ~fff,(2rcRrj) exp i ( -n~j+ 2zclzJc) (3) 
J 

in order to group together all terms containing Bessel 
functions of the same order. 

Then 

F(R,~,,I/c)= ~ G,,(R) exp in(~ + ~r/2). (4) 
11 

Notation: since we are often interested in only one 
point (l, R) in the fibre diagram, the symbol (3, will be 
used for G,~(R) where no confusion can arise. 

Cylindrically averaging the intensity, i.e. over g, 
gives the intensity 

I =  <FF*)o= ~ G,G,* (5) 
/1 
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as was shown by Waser (1955) and Franklin & Klug 
(1955). The phase problem is now to find the phase of 
each G,, and to separate the contribution of each G,,. 
Because G, contains only Bessel functions of order n, 
this problem is often referred to as that of 'separating 
Bessel functions'. 

The problem is considerably simplified by the Bessel 
function property of having a negligible value until the 
argument approaches the order. Thus, for a particle 
of finite radius, only a small number of Bessel func- 
tions contribute to the diffraction pattern at a given 
resolution. For example, the diffraction pattern of 
TMV (maximum radius 90 A) contains at most three 
Bessel function orders up to a resolution of about 7 A. 
That is, equation (5) has at most three terms on the 
right-hand side, and the problem reduces to finding 
their relative magnitudes and phases. A procedure for 
doing this is given in Appendix A, using equations set 
up in the following section. 

2. Isomorphous replacement as a general solution 

In this procedure a heavy atom such as mercury is 
added to the native structure under investigation, 
without disturbing the structure in any other way. If 
g~ is the contribution to G, by the heavy atom, that is, 
one term of the right-hand side of equation (3), we 
have 

G = G , + g ,  (6) 

where the prime signifies a heavy-atom derivative. 
Let 

G, = A ,  + iB ,  

g .  = an + ib,, ; 
then from (5) 

I = A  2 2 2 -[- B 1 -]- A 2 -[- B2 2 -'[-- . . . .  ( 7 a )  

From (3) and (6) 

r=(A1 +a0'  +(BI +bx) 2 
+ ( A z + a 2 ) Z + ( B 2 + b 2 )  2 . . . .  (7b) 

Note that ' the subscripts 1,2 etc. are labels  referring to 
different values of the Bessel function order n; they 
are not the ~actual values of n. 

I and I '  are observables, a, and b,, may be calculated 
if the positio.ns of the heavy atoms are known (see 
Holmes, Stubbs, Mandelkow & Gallwitz, 1975). We 
thus have a set of second-order equations in 2p un- 
knowns, where p is the number of significant terms in 
equation (5). Equations similar to (7a) and (7b) may 
be used in crystallography, but with only the first two 
terms on the right-hand side. These are usually solved 
by a numerical search, minimizing the errors in equa- 
tions (7b) or (more usually) the errors in the equations 
derived by taking the square root of (7b). However, the 
increased number of variables in this case makes a 
search procedure impractical, and can lead to errors. 
I~:Appendix A, an analytical procedure is given which 
finds not only the minimum errors, but all local minima. 

The procedure is in fact a minimization of the sum of the 
squares of the errors in equation (7b), subject to the 
constraint (7a). In other words, the errors in der iva t ive  
in tens i t ies  are minimized. This is not the same as the 
usual procedure of minimizing errors in s t ruc tu re  

f a c t o r s ,  but is equally valid. The solutions found are 
the most probable (or locally most probable), and are 
preferred over 'best' solutions for reasons described 
below (§ 3). 

3. Continuity as a constraint 

In a non-crystalline fibre diffraction pattern, the layer- 
line intensities are not sampled, but vary continuously. 
In fact, the vectors G, vary continuously, and this 
provides a valuable constraint on the phases of the 
points on a layer line taken as a whole. In its simplest 
form this is the principle of 'minimum wavelength' 
(Bragg & Perutz, 1952) by which the rate of fluctua- 
tion of G is restricted by the finite radius of TMV, as 
may be seen from equation (3). 

This principle has been used to determine signs for 
the equator of TMV (Caspar, 1956) and barley stripe 
mosaic virus (Finch, 1965). The qualitative application 
of the constraint to single-Bessel-function regions of 
non-zero layer lines is typified in Fig. 1, which is an 
Argand diagram on which are marked all the most 
probable values of G for a region of the first layer line. 
A solid line connects points relating to adjacent points 
in R, and it is clear that G does indeed vary slowly 
and continuously.* The two points corresponding to 
R=0.056 and R=0.065 are not included in the line 
because they would cause discontinuities incompatible 
with the minimum-wavelength principle. However, in 
each of these cases, there is a second minimum in the 
error (see § 2), that is, the phase probability distribu- 
tion is bimodal. This is the reason for determining all 
local error minima in Appendix A. These 'second 
most probable G's' are marked in the figure by crosses, 
and conform to the continuity requirement as well as 
any of the other points. In this way, G can be deter- 
mined by a combination of isomorphous replacement 
and inspection having regard to continuity. 

The procedure may readily be extended to a region 
containing p G terms, but there will be up to 2p error 
minima. Because of the difficulty in visualizing four or 
more dimensions (the real and imaginary parts of two 
or more G terms), the necessary decisions are best 
made on a quantitative basis, by a computer. To do 
this, certain assumptions must be made. For example, 
two possible G values may both conform to the min- 
imum-wavelength principle, and one must be chosen 
as more probable. Furthermore, this probability 
should be weighed against probabilities determined by 
isomorphous replacement. In Appendix B, an al- 

* Argand diagrams such as Fig. 1 have previously been 
used by A. Klug (private communication) to ensure con- 
tinuity. 
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gorithm is given which places qualitative judgements 
on a quantitative basis, using the assumption that the 
second derivative of G with respect to R should be a 
minimum. However, it should be emphasized that the 
theory in this Appendix is by no means fully developed, 
and at this stage its primary virtue is that it permits a 
computer to determine very rapidly those values of G 
which best conform with our general ideas about 
continuity along a layer line. 

4. Calculations for a model  structure 

We now have a procedure in which we determine a 
number of possible values of G for a point, each being 
locally the most probable, and then select one on the 
basis of continuity by considering a whole layer line. 
This procedure has been applied to a model data set in 
order to test the procedure, to find the number of 
heavy-atom derivatives required in practice given the 
expected level of error, and to determine the accuracy 
required in the positions of the heavy atoms. (Other 
heavy-atom parameters, such as occupancies and 
temperature factors, were not considered. Phases are 
not very sensitive to them at the resolution involved 
in this work, and these parameters cannot be satis- 
factorily refined, nor is it necessary to do so.) 

The model used was part of the second layer line of 
a hypothetical structure having the same symmetry 

Imaginary 

parameters as TMV. In Fig. 2 the real and imaginary 
parts of the first two G terms of the model are shown. 
In each experiment, heavy atoms were postulated at 
the positions given in Table 1, and G terms were cal- 
culated from equation (6) for the required number of 
derivatives. To simulate the type of errors we expect, 
errors in a Gaussian distribution were randomly added 
to the resulting structure factors [i.e. 1/I, see equation 
(5)]. We expect a certain degree of correlation between 
the errors, but the precise degree is not known. Some- 
what arbitrarily, therefore, the errors were correlated 
by the formula 

e'. = ¼(e._l + 2 e . + e . + l )  

where e;, is the error added to a point, and e._,, e. and 
e.+, are the errors generated by the Gaussian error 
program for three neighbouring points. The final 
observations in real space were not noticeably sensitive 
to this step. The errors were normalized so that E a =  
(s 2) had a value consistent with observations from the 
TMV zero layer line.* 

Table 1. Hypothetical heavy-atom sites 

The double derivative used sites 3 and 5. 
Units o f f  are arbitrary. 

Site f r (A) if(°) z (A) 
1 35 40 18 7 
2 36 50 0 0 
3 40 58 13 19 
4 32 82 15 13 
5 28 72 8 10 

o.o~ 

• " i.; 

O. 065 

~ @ G /  . 

Fig. 1. Continuity of G_~6, ~ for TMV. Numbers are values of 
R. Each circle represents the most probable value of G on 
the ~ Al:gand diagrarfil The ctosse's i'epre~ent 'm'ifi'or:peaks in 
the probability distrilSutl-6n of points whb:se inost"probable 
G's do not fit the general continuity in R~' ' • • ~;: ..... : 

Calculated intensities were then available and the 
phasing procedure described in §§ 2 and 3 was carried 
out. Both correct and incorrect heavy-atom positions 
were used (in the latter cage, heavy atoms w e r (  all 
displaced in arbitrary directions). For  example, Fig. 2 
shrws the o/iginal G's', and' those' recalculated with 
five singlr-site derivatives' and"0ne d6uble=site deri'ea' 
t ive,t  phased fi:om correct he~tvy:-atom positions, "and 
positions displaced 2 A. If  we turn out attention t6 the 
electron density maps, Q is given (K_lug, Crick & 
Wyckoff, 1958) by 

' "  o o  o o  ~ , 

~ r , ~ , z ) =  1./c ~ ~ ),,,(r) exp [i(n~.2Mz/c)] ,  ,,:.. 
,,. l=--oo n=--~ 

where" ' " . . . . .  , 

• So . . . . .  

. . . . .  ?,, t(r) ..= G,,. , (R)J , (2gRr)2nRdR . . . . . . . . . . . . .  

* E can be estimated in the usual way from the zero ~ayer 
line, but points of very low intensity near nodes in Go~ 0 should 
not be included. This is because such points only occur on the. 
centrosymmetr.lc zero layer line,' and they have errors rather 
larger than avrra~ge. ' . . . . . .  ~ ~ 

I" This combination was, used because irt is comparable with ~ 
t.he situation..in the TMV work, .where five single: and.two, 
double derivatives were used. A double derivative is usually 
One having sites tn"comm'on with t'wo single-sit¢;detivat'ive~; '''~ 
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Clearly, our prime concern in model structure deter- 
minations is that the 7 corresponding to the recal- 
culated G should be recognizably that corresponding 
to the original. Therefore, 7 was calculated for a num- 
ber of situations. For the second Bessel function, the 
whole of G is not used to calculate 7, but only G(R) 
where R > R0. For R < R0, no diffraction is possible for 
the higher-order G, because of the finite radius of the 
TMV particle and the properties of Bessel functions 
(see § 1). Therefore there is no need to separate Bessel 
functions. Furthermore, because at these radii the 
heavy-atom diffraction does not include higher orders, 
equations (7b) will be underdetermined and so large 
errors may occur if any attempt is made to separate the 
Bessel functions. (This is evident in Fig. 2, where large 
discrepancies between original and recalculated G's 
are seen in A_32,2 and B_32,2 for R<0.04.)  

Fig. 3 shows the imaginary part of the first 7 term 
for the original G, for G recalculated using four single- 
site heavy-atom derivatives and for G recalculated 
using five single-site derivatives and one double-site 
derivative. Heavy-atom positions were assumed to be 
correctly known. It is clear that, given the expected 
level of errors, the method is capable of determining 
the 7 terms with peaks positioned accurately to within 
about 2 A. We see also that although increasing the 
number of derivatives does improve the accuracy, the 
improvement is small. 

We next examine the effect of errors in the positions 
of the heavy atoms. Fig. 4 shows the same 7-term, this 
time determined with errors in the heavy-atom posi- 
tions of 1,2 and 4 A. In each case it is compared with 
the correct ~. It appears that under these conditions 
errors of 1 A can be tolerated, but errors of 2 A or 
more will introduce serious errors into the structure. 
It is worth noting that in the refinement of heavy-atom 
positions referred to by Holmes, Stubbs, Mandelkow 
& Gallwitz (1975), movements of up to 2 A from 
initially determined coordinates were sometimes ob- 
served. This suggests that even at this resolution, refine- 
ment of heavy-atom coordinates is desirable. 

5. Application to TMV 

Intensity data sets were available for native TMV, and 
seven derivatives having five independent sites. Details 
are in Table 2. Further information is given by 
Holmes, Stubbs, Mandelkow & Gallwitz (1975). The 
phasing procedure was carried out in two stages. Low- 
resolution data, to which only one Bessel function is 
expected to contribute, may be phased in a manner 
analogous to crystallographic isomorphous replace- 
ment, as mentioned in the Introduction. 

At resolution between about 12 A and 6.7 A, the 
procedures described in the preceding paragraphs were 
used. Although the only certain guide to the satis- 
factory nature of the phasing is the interpretability of 
the resultant electron density map, there are two other 
checks available. One is that the G terms should be 

..~. A17.2 
" \ ' i  

" ~',. I 1'/~ " ~ } . l \  / ! tf I 

! \ 

\ i1"7 ..... ; " ,, ~', =r~~ 

\,J 

= - " "  A= iR'- 
k 14 ...... ~x\ 

i (a) 

B17.2 • :.. 

/1~ /lll !] i , ~  A ilV"i 

:~_" ! ' .  ~::'V ".. :" V ' " J,,: Y 

-/  " V ;  ? ... 
"v 

/"~ B - 3 2 . 2  

a 

':" '('.2' "Iv 
(b) 

Fig. 2. G terms used as a model for testing the phasing proce- 
dures. Broken lines: original. Solid lines: recalculated using 
correctly positioned heavy atoms. Dotted lines: recalculated, 
heavy atoms displaced 2 /~. Real parts are shown in (a), 
imaginary in (b). 
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Table 2. Heavy-atom derivatives 
Double derivatives contain sites 1 and 2, and 1 and 3. The 

SHIMS derivative also contains site 1. 

Units of f a r e  arbitrary (approximately electron/3). 
Site Ligand* f r (/~) ~b(°) z (/~) 

1 DMA 40 72 0 0 
2 MMN 32 56.7 16"0 11.7 
3 OsO4 35 92"5 5"7 9.4 
4 SHIMS-MMN 25 71.1 5.3 - 1"3 
5 Pb 2 ÷ 24 25.4 7.1 20.6 

* SHIMS=sulphydryl imidoester attached to lysine 68. 
DMA =dimercury acetic acid. 
MMN =methyl mercury nitrate. 

continuous.  Al though continuity has to some extent 
been imposed during the phasing, it is obviously not  
assured unless the phasing is sufficiently good. F r o m  
Fig. 5(a), which shows the parts  of  the G terms for the 
first layer line of  TMV,  it can be seen that  there are 
very few major  departures f rom a reasonable degree 
of  continuity. (A reasonable degree can be determined 
from the minimum-wavelength principle, which gives 
the min imum distance in R for one oscillation cycle as 
0.01 /~-1 for a particle radius of  100 /~.) The other 
check is in the form of  7, and is closely related to the 
check on G. We know from the zero layer line that  

~ , , . ,  ~i~og,.o~y po. j i!I :.l I/~ 111~ I~ r'~ .... 

. . /  . ..: 

o iT' ::t !1\ ,rgi o 
' , lii kl /i 

-~ .- ~-~ /; .... 

Fig. 3. Imaginary part of the first ? term for the model, showing the effect of extra heavy-atom derivatives. Solid lines: original. 
Dotted line: calculated using five single-site derivatives and one double. Broken line: calculated using four single-site derivatives 
(the algebraic minimum). 

~7.2(irnaginaryp art) 1~  °lb.....~,, ~ 

/ 5  ,' t : /5 
/ " \  - " " I 

/ I // "x I\~ i/i~ 
:k ~ J  ! I . ".. .~ - X \ l " " 

k i,' F 
,q xT l'll i -" ./ 

Fig. 4. Effect of incorrectly positioned heavy atoms on the imaginary part of the first 7 term for the model. (a) Original. (b) Re- 
calculated, heavy atoms correctly placed. (c) Recalculated, heavy atoms displaced 1 A. (d) Recalculated, heavy atoms dis- 
placed 2/~. (e) Recalculated, heavy atoms displaced 4/~. 
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TMV is a hollow cylinder, of minimum radius about 
20 A and maximum radius about 90 A (Franklin, 
1956; Caspar, 1956). Therefore, we do not expect to 
see contributions to y outside these radii. Fig. 5(b) 
shows the ~, terms corresponding to the G terms in 
Fig. 5(a), and we see that most of the density is within 
the expected limits. 

The Fourier synthesis which followed has been 
described by Holmes, Stubbs, Mandelkow & Gallwitz 
(1975). The high degree of interpretability of the elec- 
tron density map is in itself confirmation of the power 
of these methods to determine sufficiently accurate 
phases. One further observation has been made, how- 
ever, about the number of heavy-atom derivatives 
required to produce an accurate electron density map. 
An unpublished TMV map was produced using only 
six derivatives with four independent sites (the present 
set without the lead derivative). It was very similar to 
the five-site map, but there were one or two regions 
where interpretation was more difficult. In particular, 
the polypeptide chain in the five-site map is clear and 
unambiguous between residues 50 and 90. In the four- 
site map this density was broken, leading to an am- 
biguity in the chain tracing. Once again, therefore, it is 

clear that extra information from more derivatives than 
are algebraically required is small but useful. 

6. Conclusion 

Isomorphous replacement has been shown to be an 
adequate technique for separating terms of different 
Bessel-function order as well as phasing the terms in 
fibre diffraction patterns of TMV, and in model cal- 
culations. It appears that at the resolution of this work 
(6.7 A) heavy-atom positions should be known within 
1 A. The minimum number of derivatives required is 
twice the number of terms to be separated and this 
could clearly present problems for structures having 
lower symmetry than TMV. However, experience with 
preparing derivatives is growing, and it is quite possible 
that a structure requiring three or four terms to be 
separated could be solved, given sufficiently good data. 

I would like to thank Professor K. C. Holmes for 
his continued advice and encouragement during this 
work, and Mrs G. Eulefeld for her assistance with the 
figures. I would also like to thank Drs E. Mandelkow 
and J. Barrington Leigh for valuable discussions. 
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Fig. 5. (a) The parts of the G terms found for the 'first layer line of TMV." ' 
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Fig. 5 (cont.). (b) The parts of the 7 terms found for the first 

layer line of TMV. Solid lines represent real parts, broken 
lines imaginary parts. Structure is largely confined to radii 
between 20 and 100 A,. 

APPENDIX A* 
A least-squares procedure for minimizing the error 

in phases and Bessel-function term ratios 

We have the equation 

< Co 2= ~ x 2 (A1) 
i • . 

. ,  , . . .  

and a set of equations > 

c~= ~ (x, + au) 2. (A2) 

These correspond to equations (7a) and (7b). Each 
x corresponds to either the real or the imaginary part 
of some G,. a u is the component of the diffraction from 
.heavy atom j corresponding to x,. 

This overdetermined set of second-order equations 
could be solved by a numeri~cal search procedure, 
seeking to minimize the error in equation (A2) (and 
possibly A1), but the procedure, described here was 
faster by a factor of 50 on a Sigma 2 computer, as well 
as being slightly more accurate. We make use of the 
fact that errors in equation (A1) are usually much 
smaller than those in (A2). This is particularly so for 
very carefully collected data, in which errors are 
caused mainly by lack o f  isor0o.rphism..'We :then con- 
sider only the errors e j. in  the derivative intensities cJ 

:-  - ' ,  ' I : ,~  ' : :  ~ ! ' :  ' ' . i , . • ! ,  ~. " :  i " ' 

• By R. Diamond and G. J. Stubbs. . . . .  

and from (A2) obtain 

c~= ~ (x, + au) z + 28j (A3) 
J 

and, substituting (A1) in (A3), 

X a j)+ j 
i 

or, in matrix notation, 

A x = b + ~  (A4) 
where 

~ 1  2 2 bj-- (cj-co- 2 alj) .  
t 

(A4) is a set of linear equations, but any solution is 
subject to the constraint (A1) used in deriving the set. 

We shall assume that all the equations (A4) have 
equal weight. In practice this is achieved by dividing 
each equation by the expectation value of e j, which is 
derived below. 

We are interested in minimizing the sum of error 
squares, ere (the superscript T denotes the transpose 
of a matrix or vector), subject to the constraint (A1), 
and we want to find a// local minima. 

Consider 

~T~:= bTb_ 2bTAx + x T A T A x .  (A5) 

This is the equation of a family of ellipsoids, each 
determined by a value of ere. They are illustrated in 
Fig. 6, together with the spheroid represented by equa- 
tion (A1), represented as a two-dimensional case. It is 
clear that any solution x to our problem is a point 
where an ellipsoid and the spheroid are tangential, 
and thus have parallel normals. Now the normal to 
any ellipsoid (A5) is 

Mx - A Tb 

where M =  ATA.  
Therefore 

M x  - A Tb = l tx  . (A6) 

/z is a scalar, not yet known, associated with x, and we 
have to find those values of)z corresponding to xTx = 
C~. Clearly 

. .  

'" . .  • . . . .  ( M - : l X I ) x =  ATb (A7) 

(I is the ~identity matrix). Now, let E contMn the 
eigenvectors of M such that . . . .  

E T M E =  A ,  " E T E =  I 

(A is the diagonal matrix of eigenvalues, whose i th 
element is 2i). 

Let 
V = E T x  ( X  = E V ) .  ( A 8 )  

Pre-multiplying (A7)by  E T, 

E T ( M - l d ) E v  = E r A  Tb =¢o (this defines o~). 

Therefore 
( A - # ) v = o .  
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The ith component of v is thus seen to be 

03 i 

v~- 2~-/z 

Imposing the condition (A1) gives us 

(°,)' 4=x x=v v=  (A9) 

From this we may determine values of / t .  For an 
n-dimensional problem there will clearly be between 2 
and 2n solutions of (A9). These may be found in many 
ways. The method used in this work was a Newton- 
Raphson iteration applied to the octic in /z derived 
from (A9). Alternatively, Newton-Raphson iteration 
may be applied directly to (A9), starting from any 
point/~ close enough to 2~ to ensure that 

In this case, it will be immediately obvious whether 
a real pair of solutions exists between 2~ and 2~+~, as 
the sequence of iterates is monotonic and bounded by 
2 and 2~+~ if and only if such a pair exists. 

Once the solutions/z have been found, a set of values 
of x may be derived from (A8). These will include 
maxima, minima and saddle points. 

The nature of the stationary point x is determined 
by considering a general point x+Ox. 

Let 

(subscripts g and s refer to general and stationary 
points). 

From (A5) and (A6), 

g~2 = gxrMJx + 2/tgxrx. 

If (x r +gx  r) (x+gx) = r  2 

g~2=gxr(M-lzI)dx +/t(r 2 - CoZ). (A10) 

This sign depends upon the eigenvalues of S,_a, so x 
may be characterized as a minimum if they are all 
positive, a maximum if they are all negative, and 
otherwise as a saddle point. 
Note on weights: The expectation value E of e 
[see equation (A3)] could be estimated by studying a 
centric layer line (containing only a Jo term), but E is a 
function of Fn, and has been found difficult to estimate 
reliably from the limited number of data available. In 
contrast, the expectation value EF of the error ev in F 
has been found here (in the single-Bessel-function 
region of the fibre diagram) and in a crystallographic 
case (Stubbs, 1972) to be independent of F. Therefore, 
we have estimated EF from the zero layer line, and cal- 
culated E as follows: 

8=er(ep+ 2F) (A12) 

E2= (e 2> and E~= (e~>. 

Squaring (A12) and taking mean values, 

@z)= (4>  + 4F(e~> + 4FZ@~). 

We use the fact that ev has approximately a Gaussian 
distribution to obtain the relationship 

E2= 3E4 + 4FZE 2. (A13) 

Equation (A13) has been confirmed experimentally by 
Stubbs (1972) in a crystallographic case where there 
was sufficient centric data to estimate E and Ep 
independently. 

We note that the procedure described in this Appen- 
dix could be applied to the crystallographic phase 
problem, in which equation (A1) has only two terms. 
Most probable phases have often been used in refine- 
ment procedures [for example, by Kraut, Sieker, High 
& Freer (1962)] and in such cases, the direct determina- 
tion of the phase by this method will be very much 
faster than a numerical procedure. Note that the most 
probable phase corresponds to the smallest/t [as may 
be deduced from equation (A10), remembering that in 
this case &2 must always be positive] and so character- 
ization of the stationary points is not required. 

Now let ROu= Ox, where R is any orthogonal matrix 
such that Rrx  is a vector with all components zero 
except the last. [R may be constructed from simple 
rotation matrices (Rollett, 1965).] 

Let 
S,= Rr(M-lzI)R. 

Then 
&Z=~urS,6u+lz(r2-c2o). (Al l )  

We are concerned with the sign of &2 for perturba- 
tions in the hyper-surface of the spheroid, so the 
second term in (A11) may be dropped. 

Let gu,-1 be the n- l -d imensional  vector con- 
taining all but the last element of Ou, and S,-1 the 
corresponding submatrix of S,. Then in a domain 

r around x, &2 has the same sign as gu,_lS,_~Ou,_l. 

xe 

Fig. 6. The family of ellipsoids, centred on the heavy dot, 
representing isometric values of the residual ere in equation 
(A5). The circle represents equation (A1), the constraint on 
the solution vector. Two possible values of x are shown, 
each being a local minimum in the residual subject to the 
constraint. 
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APPENDIX B 

The use of continuity of diffraction 
in phase determination 

Continuity along a layer line stems from the finite size 
of a TMV particle which necessitates that the com- 
ponents of G do not fluctuate too rapidly. We can see 
this by considering a component 

A. , , (R)  = ~fJ.(2nRrj) cos 0: (B1) 
J 

(cos 0j is a phase factor independent of R). 
Since any one J.(2nRrj) does not fluctuate rapidly, 

and rj has a strictly limited upper bound, A., l(R) is 
correlated in R to an extent related to the value of rj. 
To express this correlation and use it in phase deter- 
mination would be the proper use of continuity, but 
this would involve solving the phase problem for all the 
points on a layer line simultaneously, which presents 
serious difficulties in computer storage. Instead a 
method is presented below of finding the smoothest 
function by an iterative procedure. Smoothness or 
correlation is maximized by minimizing the high-order 
derivatives of a function (in this case, A with respect 
to R). For example, writing out the k th  term of the 
Taylor expansion for A we get: 

(n-  no)%! cos 0A 
J 

[(k) signifies differentiation by the argument k times]. 
Now, J<k)(z) is of the same order of magnitude as 

J(z), so the ratio of term k to term (k+  1) is approx- 
imately 

(k + 1)/2nro(R- Ro) 

where r0 is the mean radius of the diffracting object. 
For R-R0=0 .0015 ,  and r0=65, the first three terms 
have relative magnitudes 

1:0.6:0.2. 

Thus, given a choice of two sets {A}, we choose the set 
in which the second derivatives are minimized. (In 

Imaginary 

3 a  .... ~. 
1 2 ............ ~, / .  ' , / \  

R e a l  

Fig. 7. An example of alternative paths to be taken by the 
vector H(R). Path (b) satisfies continuity requirements better 
than the other three possibilities. 

other words, the curvature in Fig. 1 is minimized.) 
This procedure has the advantage, as will be shown 
below, that it can be applied to a layer line in a single 
pass, considering only three points at a time. 

If we have a sequence of closely spaced equidistant 
points RI, R2, . . . ,  we may estimate the probability 
of the value of Ai+~: 

P(Ai+x)=k exp -[(Ai+~-2Ai+A~_I)Z/2EZ]. (B2) 

An implicit assumption is that the second derivatives 
of A have a Gaussian distribution about zero, standard 
deviation E. While this is not strictly valid (the third 
and first terms of the Taylor series are slightly correl- 
ated), it has been found to serve well enough for prac- 
tical purposes. 

E 2 can be estimated from the zero layer line, or any 
region such as the single-Bessel-function region where 
phases are already known with reasonable certainty. 
(A continuity diagram such as Fig. 1 would be a 
suitable source.) In practice, since only a small number 
of possible values for Ai+1 are considered, the finally 
selected sequence is very insensitive to E. 

Now let It(R) be a multidimensional vector having 
the components of all the G factors contributing to 
diffraction at a point in reciprocal space. By repeated 
use of (B2) we may choose between different sets 
{H(Ri)}. If  we have a number of possible values for 
each I-I(Ri), it is not necessary to consider every 
possible set. We consider the values of i in turn. It is 
necessary to consider every possible value of H(R~) 
and I-I(R~_I), but values with index less than i do not 
affect the calculation of subsequent probabilities. The 
algorithm for calculating the most probable {H(RI)} is 
as follows: [Notation: htj is the j t h  possible value for 
H(RI)]. In store we have a number of sequences 
{hl j . . .h i  j}, each terminating in a different pair 
{hl-lj, hlj}. We consider every pair {hij, hi+lj} and 
calculate from (B2) the probability that each of the 
sequences in store terminating in hi: continues with 
hi +aj. The sequence with the highest probability forms 
the beginning of the new sequence {hlj...hij, hl+lj}. 
When all values of i are exhausted, the sequence with 

the highest joint probability [i.e. H P(hij)] is accepted. 
1 = 3  

A two-dimensional example is given in Fig. 7. Six 
points, closely spaced in R, are shown. (For inter- 
pretation of the diagram see Fig. 1.) There are alter- 
natives available for points 3 and 4, so four pathways 
are possible. The following sequences are stored. 

Step 1 : {1,2} 
Step 2: {1,2,3a} and {1,2,3b} 
Step 3 : { 1,2, 3a, 4a} { 1,2, 3b, 4a} 

{1,2,3a,4b} {1,2,3b,4b} 

(at this stage { 1,2, 3a, 4a} has a much higher probability 
than the others, but all are retained) 

Step 4: {1, 2, 3a, 4a, 5} and {1,2,3b,4b,5}. 

Two sequences have now been dropped, since no 
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possible point 6 can make them more probable than 
the sequences retained. The b sequence is now more 
probable. In step 5, when point 6 is known, only the b 
sequence is retained. 

If the elements h~j have different probabilities apart 
from continuity considerations (which will normally 
be the case, if they have initially been found by some 
such method as isomorphous replacement), these 
initial probabilities can be included at both the se- 
quence-extension stage and the final selection stage. 
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Self-Crystallizing Molecular Models. IV. Revision and Conclusion 
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Molecular models with magnetic multipoles, which were invented by the author for the purpose of 
simulating crystal structures, are revised. The models of the new type are made of Ba ferrite magnets 
and plastic pieces only, no Mn-Zn ferrite being used. The crystal structures of SiF4 and a-CF4, as 
well as those of UCI6 and WCI6 are represented by use of different species of molecular models. 

Introduction 

The purpose of this series of papers (Kihara, 1963, 
1966, 1970) is to explain the structures of molecular 
crystals in terms of the shapes of the molecules as well 
as the intermolecular force. We treat rigid nonpolar 
molecules with no power to form hydrogen bonds. 

If the molecules do not possess any appreciable 
electric multipoles, the crystal structures are governed 
by the principle of closest packing of the molecules. 
The orthorhombic crystals of C12, Br2 and I2, and the 
cubic crystals of SiI4, GeL, SnL, etc. are examples of 
such structures. 

If, on the other hand, the molecules have sufficiently 
strong electric multipoles, the electrostatic interaction 
often governs the crystal structure. In such cases, the 
crystal structure does not necessarily correspond to the 
closest packing of the molecules. 

The electrostatic multipolar interaction between 
molecules can be represented by use of molecular 
models with magnetic multipoles. A structure into 

which these models are assembled will simulate the 
actual crystal structure. 

In Part II (1966), eight types of molecular models 
made of barium ferrite magnets were given. In Part III 
(1970), models consisting of barium ferrite magnets 
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Fig. 1. Ratio of the triple-point to the critical-point tempera- 
tures as a function of the dimensionless quadrupolar inter- 
action. 


